
4/1/2019

1

Onward to Approval:
Documenting Agile Development for

Regulatory Compliance

Brian Shoemaker, Ph.D.
Principal Consultant, ShoeBar Associates

© 2012 ShoeBar Associates

All Rights Reserved

1

My Background

• Originally an analytical chemist

• 15 y in clinical diagnostics (immunoassay):
analytical support → assay development → instrument software validation

• 6 y as SW quality manager (5 in clinical trial related

SW)

• 7 y as independent validation consultant to FDA-

regulated companies – mostly medical device

• Active in: software validation, Part 11 evaluation,

software quality systems, auditing, training

© 2012 ShoeBar Associates All

Rights Reserved
2

4/1/2019

2

Onward to Approval – Documenting Agile

Development

• Agile vs IEC 62304: apparent contradiction?

• Quality – avoid bad news late

• Risk Management fits in well

• Documentation can be iterative!

• Agile can be clearly superior

© 2012 ShoeBar Associates All

Rights Reserved
3

Why this discussion?

• Traditional doc-heavy SW development is

expensive, slow, and error prone

• Regulatory bodies rightly concerned

with product software vs safety

(OSEL report: 24% of 2011 medical

device recalls were for software!)

• Classic belief: tightly controlled process →

better engineering

• Agile is highly productive, but seems the

antithesis of tightly controlled process

© 2012 ShoeBar Associates All

Rights Reserved
4

4/1/2019

3

Agile Methods for Device SW?

• Simple answer: yes

• Discipline is necessary – but that’s always

true

• Compare IEC 62304 and the Agile

Manifesto: despite contrast, there’s

common ground

© 2012 ShoeBar Associates All

Rights Reserved
5

IEC 62304 – All about processes

Key Principles:

• Have a Quality Management System

• Use a risk management approach

• Classify software according to safety

• Have processes for known development steps

• Use maintenance processes

• Manage configuration (versions)!

• Follow a problem resolution process

© 2012 ShoeBar Associates All

Rights Reserved
6

4/1/2019

4

Known Development Processes?

• Planning

• Requirements analysis

• Architectural design and detailed design

• Unit Implementation and verification

• Integration and integration testing

• System Testing

• Software release

© 2012 ShoeBar Associates All

Rights Reserved
7

These processes may sound heavy – but we’ll come
back to what the standard doesn’t say or require!

Manifesto for Agile Software

Development

© 2012 ShoeBar Associates All

Rights Reserved
8

We are uncovering better ways of developing software by

doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we

value the items on the left more.

http://agilemanifesto.org/

4/1/2019

5

These seem contradictory . . .

© 2012 ShoeBar Associates All

Rights Reserved
9

. . . But the common goal is

quality and as a corollary, safety!

Onward to Approval – Documenting Agile

Development

• Agile vs IEC 62304: apparent contradiction?

• Quality – avoid bad news late

• Risk Management fits in well

• Documentation can be iterative!

• Agile can be clearly superior

© 2012 ShoeBar Associates All

Rights Reserved
10

4/1/2019

6

Common Scenario . . .

© 2012 ShoeBar Associates All

Rights Reserved
11

• Project velocity varies greatly

• Much slower at integration time

Specify Implement Verify Validate

V
e
lo

c
it
y

Average velocity

Solution: Pace yourself! It’s a marathon, not a sprint

Lean Thinking

© 2012 ShoeBar Associates All

Rights Reserved
12

Lean Principles:Lean Thinking

Lean Manufacturing
(All kinds)

Lean Development
(S/W, H/W, Services, other)

Zero Defects

Minimize Work In Progress

Continuous Improvement

Our “pain points”:
Bad news late in projects

Implementation different from spec

Documentation issues

Classic “best practices”
Agile practices:
• Continuous Integration
• Automated unit tests
• Small co-located teams

4/1/2019

7

Avoid Late Integration

© 2012 ShoeBar Associates All

Rights Reserved
13

• Integrate new work as you go

• Incremental deliveries early & often

Deliver Incrementally

© 2012 ShoeBar Associates All

Rights Reserved
14

• To deliver incrementally you must:

– Carve the work into functional pieces

– Each piece must be small

– Each piece must be testable

Hardware layer

Firmware layer

Operating system layer

Command sys layer

GUI layer

time

F
e
a
tu

re
 1

F
e
a
tu

re
 2

F
e
a
tu

re
 3

time

4/1/2019

8

Work pieces: user stories

© 2012 ShoeBar Associates All

Rights Reserved
15

• User stories are similar to use cases

– Written from customer view point

– Written using words all understand

• Smaller than use cases

• Estimates are owned by the team

– Equally likely to be too high or too low

Example User Story

© 2012 ShoeBar Associates All

Rights Reserved
16

• Story – Card, Conversation, Confirmation –

Both In and Out
values are displayed
and out value should
equal to 2*In value

Verify Sensor Module
OS runs on the new
Sensor Module
Radar

An old idea: If you have a clear goal, you are much more likely to

achieve it.

Story Conditions of Satisfaction

Cards have

the headline

Narrative details

captured in documents

CoS becomes the root of

story acceptance test

headline, narrative, test

4/1/2019

9

4 Stages of Story Refinement

© 2012 ShoeBar Associates All

Rights Reserved
17

Story and CoS (Conditions of

satisfaction) defined – from “user

needs and intended uses”

FDA considers software

validation to be

“confirmation by
examination and provision
of objective evidence that
software specifications
conform to user needs and
intended uses, and that the
particular requirements
implemented through
software can be
consistently fulfilled.”
– GPSV p. 6

Automated agile tests

GPSV = General Principles of Software Validation

Product Owner conducts the team in

‘planning poker’ story points

estimation

At iteration planning meeting, team

defines tasks & team-owned task

estimates (hours)

During iteration, team pulls further detail

that was not needed for estimation.

PO validates stories, with Testers’

help.

Total Transparency

© 2012 ShoeBar Associates All

Rights Reserved
18

• Status reporting is not separate from team’s

own way of tracking their work

W
o

rk
 (

h
o

u
rs

)

Days in this Iteration

Each day:
• Team estimates hours remaining for

each task
• All remaining hours are summed
• That total is today’s data point on

burn-down chart

Burn-down

chart

4/1/2019

10

Predictable Project Speed

© 2012 ShoeBar Associates All

Rights Reserved
19

S
to

ry
 p

o
in

ts

Iterations

Mean (Last 8) = 17

Mean (Worst 3) = 14

15 17 18 20 20

12 15
19

Q. How long to finish project if

100 story points of work

remains in product backlog?

A. If it’s 14 points/iter, then it takes

7.2 iterations. If it’s 17 points/iter.

then it will take 5.9 iterations. You

can be conservative or not, as

appropriate.
5.9 7.2

Onward to Approval – Documenting Agile

Development

• Agile vs IEC 62304: apparent contradiction?

• Quality – avoid bad news late

• Risk Management fits in well

• Documentation can be iterative!

• Agile can be clearly superior

© 2012 ShoeBar Associates All

Rights Reserved
20

4/1/2019

11

Objection → Discipline

© 2012 ShoeBar Associates All

Rights Reserved
21

Perception: Agile has no formal hazard mitigation process

 Developers may not identify hazards arising from software

 Is zero-defects the same as risk-free?

 Mitigations may not be documented or tested

 Can teams avoid negating a mitigation in later development or

refactoring?

Discipline: Include risk management in each iteration

Evaluate hazards and update risk management file

Capture mitigations in requirements

Plan to include review of risk management docs

Requirements / Hazards:

Converging Analyses

© 2012 ShoeBar Associates All

Rights Reserved
22

Requirements

Requirements Hazards

Requirements

+ Mitigations

Early in project

Preliminary

High-level

Approximate

Late in project

Refined

Detailed

Specific

4/1/2019

12

Hazards: analyze early and often

© 2012 ShoeBar Associates All

Rights Reserved
23

 Systematic methods (FMEA / FMECA, FTA) help

analyze potential hazards

 Evaluate hazards repeatedly throughout project

 Just as requirements (aka User Stories) become

more refined as design evolves -

 So identifying hazard mitigations is changing or

adding to requirements

 Think of a hazard as a negative user story

Hazards: Often Caught in Context

© 2012 ShoeBar Associates All

Rights Reserved
24

 Direct failure
Software flaw in normal, correct use of system causes or permits

incorrect dosage or energy to be delivered to patient.

 Permitted misuse
Software does not reject or prevent entry of data in a way that (a)

is incorrect according to user instructions, and (b) can result in

incorrect calculation or logic, and consequent life-threatening or

damaging therapeutic action.

 User Complacency
Although software or system clearly notes that users must verify

results, common use leads to over-reliance on software output and

failure to cross-check calculations or results.

4/1/2019

13

Hazards: Often Caught in Context

© 2012 ShoeBar Associates All

Rights Reserved
25

 User Interface confusion
Software instructions, prompts, input labels, or other information

is frequently confusing or misleading, and can result in incorrect

user actions with potentially harmful or fatal outcome.

 Security vulnerability
Attack by malicious code causes device to transmit incorrect

information, control therapy incorrectly, or cease operating. No

examples in medical-device software known at this time, but

experience in personal computers and "smart" cellular phones

suggests this is a serious possibility.

Lean-Agile adapts well to hazard

mitigation

© 2012 ShoeBar Associates All

Rights Reserved
26

 Early analysis not static – review & revise as
iterations proceed

 Users / product owner have multiple chances
to uncover hazard situations

 Hazards can be simulated via “mock objects”
in test suite

 Flexible, adaptive method can react to hazards
learned during development (considered
“negative user stories”)

4/1/2019

14

Onward to Approval – Documenting Agile

Development

• Agile vs IEC 62304: apparent contradiction?

• Quality – avoid bad news late

• Risk Management fits in well

• Documentation can be iterative!

• Agile can be clearly superior

© 2012 ShoeBar Associates All

Rights Reserved
27

Iterative Docs – Objections, Answers

© 2012 ShoeBar Associates All

Rights Reserved
28

Points to counter:

 Lack of defined requirements

 Lack of structured review/release cycles

 Lack of documentation

Advantages to offer:

 Ability to resolve incomplete / conflicting

requirements

 Ability to reprioritize requirements (mitigations) as

system takes shape

 Many chances to identify hazards (controls not frozen

too soon)

4/1/2019

15

Objection → Discipline

© 2012 ShoeBar Associates All

Rights Reserved
29

Perception: Agile methods lack formal requirements

 “User Stories” are usually vague – do they need to under doc control?

 How and when does a complete requirement document get

assembled?

 Developers focus on implementation – what about fundamental

requirements?

 Will developers pay attention to issues that affect safety or

effectiveness?

 Can we be sure that something implemented in one iteration won’t

be eliminated in later refactoring?

 Are requirements under configuration management?

Discipline: Capture requirements during the iteration

Not all Requirements are Equal

© 2012 ShoeBar Associates All

Rights Reserved
30

High LevelDetailed

Every-

thing
Classical

Safety /

Effectiveness
Lean UI

(waste!)

Source: Pate & Russell, 2010

4/1/2019

16

Models vs. Code vs. Documentation

© 2012 ShoeBar Associates All

Rights Reserved
31

Some of Scott Ambler’s Points

© 2012 ShoeBar Associates All

Rights Reserved
32

 The fundamental issue is communication, not documentation

 Document stable things, not speculative things

 Well-written documentation supports organizational memory

effectively, but is a poor way to communicate during a project

 With high quality source code and a test suite to back it up you

need a lot less system documentation

 Each system has its own unique documentation needs, one size

does not fit all

 The investment in system documentation is a business

decision, not a technical one

 Create documentation only when you need it at the

appropriate point in the life cycle

4/1/2019

17

Document Effectively but Flexibly

© 2012 ShoeBar Associates All

Rights Reserved
33

 SOPs: focus on deliverables
 Cover all required areas

 Specify outputs, not strict order of completion

 Development outputs: focus on

information
 Requirements, architecture/design, hazard analysis

 View as deliverables rather than process support

 Consider nontraditional form if this makes

information capture easier or more automatic

Use Appropriate Tools

© 2012 ShoeBar Associates All

Rights Reserved
34

 Initial user stories – may simply be index cards

 Requirements manager as they’re elaborated

 Unit test harness

 Consider code-comment document extraction

 User-focused functional / system test engine –
best if tied to requirements, e.g. FitNesse

4/1/2019

18

Don’t Forget Communication!

© 2012 ShoeBar Associates All

Rights Reserved
35

 With customer / product owner – for input and
ongoing feedback

 Iteration end Demo; discussions during iteration

 Among team members – frequent but brief, to
build team dynamics

 Daily stand-up meeting; team room conversations

 With management – to show progress and build
trust

 Information radiators; Iteration end demo

Documents as Output

© 2012 ShoeBar Associates All

Rights Reserved
36

 From Document-centric, supported by Conversation

Customers
Delivery

Team

 To Conversation-centric, supported by documents

Customers
Delivery

Team

4/1/2019

19

Capture knowledge as work proceeds

© 2012 ShoeBar Associates All

Rights Reserved
37

SRS

•Story 1

•Story 2

•Story 3

•Story 4

•Story 5

•Story 6

•Story 7

Tests

DS

Product

Onward to Approval – Documenting Agile

Development

• Agile vs IEC 62304: apparent contradiction?

• Quality – avoid bad news late

• Risk Management fits in well

• Documentation can be iterative!

• Agile can be clearly superior

© 2012 ShoeBar Associates All

Rights Reserved
38

4/1/2019

20

What ISN’T in IEC 62304?

 No prescription for how to accomplish

requirements

 No specific required software life cycle

 Particular documents not specified – what to

cover, not where to cover

© 2012 ShoeBar Associates All

Rights Reserved
39

From IEC 62304

© 2012 ShoeBar Associates All

Rights Reserved
40

Introduction

This standard does not prescribe a specific life cycle model. The

users of this standard are responsible for selecting a life cycle model for

the software project and for mapping the processes, activities, and tasks

in this standard onto that model.

Annex B (informative)

Guidance on the provisions of this standard

The purpose of this standard is to provide a development process that

will consistently produce high quality, safe medical device software. To

accomplish this, the standard identifies the minimum activities and

tasks that need to be accomplished to provide confidence that the

software has been developed in a manner that is likely to produce

highly reliable and safe software products. (...)

4/1/2019

21

From IEC 62304

© 2012 ShoeBar Associates All

Rights Reserved
41

Annex B (cont.)

This standard does not require a particular software development

life cycle model. However, compliance with this standard does imply

dependencies between processes, because inputs of a process are

generated by another process. For example, the software safety

classification of the software system should be completed after the risk

analysis process has established what harm could arise from failure of

the software system.

Because of such logical dependencies between processes, it is easiest

to describe the processes in this standard in a sequence, implying a

"waterfall" or "once-through" life cycle model. However, other life cycles

can also be used.

From IEC 62304

© 2012 ShoeBar Associates All

Rights Reserved
42

5.1.1. Software Development Plan

The manufacturer shall establish a software development plan (or plans) for

conducting the activities of the software development process appropriate to

the scope, magnitude, and software safety classifications of the software

system to be developed. The software development life cycle model shall either

be fully defined or referenced in the plan (or plans). (...)

NOTE 1. The software development life cycle model can identify different

elements (processes, activities, tasks, and deliverables) for different software

items according to the software safety classification of each software item of

the software system.

NOTE 2. These activities and tasks can overlap or interact and can be

performed iteratively or recursively. It is not the intent to imply that a specific
life cycle model should be used.

4/1/2019

22

IEC 62304 Development Lifecycle

© 2012 ShoeBar Associates All

Rights Reserved
43

Activities within ISO 13485 / 14971
Customer

Needs

Customer

Needs
Satisfied

SYSTEM development ACTIVITIES (including RISK MANAGEMENT)

7 Software RISK MANAGEMENT

8 Software CONFIGURATION MANAGEMENT

9 Software problem resolution

5.1

SW

Devel

Planning

5.2

SW

Rqmts

Analysis

5.3

SW

Architect

design

5.4

SW

Detailed

design

5.5

SW Unit

Implem

& verif

5.6

SW

Integrn,

Int Tstg

5.7

SW

System

Testing

5.8

SW

Release

IEC 62304 Maintenance Lifecycle

© 2012 ShoeBar Associates All

Rights Reserved
44

Activities within ISO 13485 / 14971
Maintenance

Request

Request

Satisfied

SYSTEM maintenance ACTIVITIES (including RISK MANAGEMENT)

7 Software RISK MANAGEMENT

8 Software CONFIGURATION MANAGEMENT

9 Software problem resolution

6.1
Estab

SW Maint

Plan

6.2
Prob &

modificn

analysis

5.3
SW

Architect

design

5.4
SW

Detailed

design

5.5
SW Unit

Implem

& verif

5.6
SW

Integrn,

Int Tstg

5.7
SW

System

Testing

5.8
SW

Release

6.3 Modification Implementation

4/1/2019

23

AAMI Agile TIR: Map Agile to 62304

© 2012 ShoeBar Associates All

Rights Reserved
45

Each Project

5.1 SW Development Planning - Project

5.2 SW Requirements Analysis – High Level Backlog Management

5.3 SW Architectural Design – Infrastructure, Spikes

Each Release (multiple releases)

5.1 SW Development Planning – Release

5.6 SW

Integration &

Integration Testing

5.7 SW System

Testing & Regression

Testing

5.8 SW Release

Each Increment (multiple increments)

5.1 SW Development Planning – Increment

5.6 SW

Integration &

Integration Testing

5.7 SW System

Testing & Regression

Testing

Each Story (multiple stories)
5.1 SW Development Planning - story
5.2 SW Requirements Analysis - story details
5.3 SW Architectural Design - Emergent
5.4 SW Detailed Design
5.5 SW Unit Implementation & Verification
5.6 SW Integration & Integration Testing
5.7 SW System Testing

Device Software Case Study

© 2012 ShoeBar Associates All

Rights Reserved
46

 Authors compared two projects (one Agile, one not):

found that Agile gave lower cost, shorter development

time, better accommodation of change, better test

cases, and higher quality

 Used FDA’s concept of “least burdensome approach”

as part of their justification for using the Agile method

 Considered risk as integral part of development

 Iterative approach helped manage scope and limit

feature creep

4/1/2019

24

Device Case: Comments

© 2012 ShoeBar Associates All

Rights Reserved
47

Developer:

“Control what you know, don’t let it control you.”

Client:

“At time of commercial launch, a number of features,

once thought to be essential, were not included. Some

were deferred as long as three years. Nonetheless, the

product was considered highly successful and trading

off nice to have features for three years of sales is an

easy choice.”

Device Example: Reported Results

© 2012 ShoeBar Associates All

Rights Reserved
48

 High visibility – few surprises, able to manage and

control

 Cost / duration: Agile project required 20-30% smaller

team and shorter time, saved 35-50% cost, vs. non-

Agile project

 Agile project gave higher quality – fewer overall

defects, especially at end of project

 Agile project involved far better work-life balance and

team morale (issues surfaced and managed in course

of project, not saved for the end)

4/1/2019

25

Agile Performance: Productivity

© 2012 ShoeBar Associates All

Rights Reserved
49

“Biotech” re-
implemented,
as Agile (1)

“Biotech”
original, as
Waterfall (1)

SirsiDynix, as
Agile (Scrum)
(2)

Person Months 54 540 827

Lines of Java 51,000 58,000 671,688

Function

Points (FP)

959 900 12,673

FP per

Dev/month

17.8 2.0 15.3

1. M. Cohn, User Stories Applied for Agile Development, p. 175. Addison-Wesley, 2004 (Reported without giving
company or project name, but it was a life sciences application.)

2. J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with
Outsourced Development Teams," in HICSS'40, Hawaii International Conference on Software Systems, Big
Island, Hawaii, describing SirsiDynix team.

Agile Performance: Quality

© 2012 ShoeBar Associates All

Rights Reserved
50

Team Defects/FP Process

Follett Software (1) 0.0128 Agile, XP co-located

BMC Software (1) 0.048 Agile, Scrum distrib.

GMS (2) 0.22 Agile, XP for embedded

Industry Best (3) 2.0 traditional

Industry Average (3) 4.5 traditional

1. M. Mah, “How Agile Projects Measure Up and What This Means to You”, Cutter IT Journal vol 9, no. 9, Sep 2008.
2. N. Van Schooenderwoert, “Embedded Agile Project by the Numbers With Newbies”, Agile 2006 conference report.
3. Capers Jones, “Software Quality in 2002: A Survey of the State of the Art”, presentation to Boston SPIN, Oct 2002

Co-located agile XP team achieved 100X the defect

performance of the best traditional waterfall teams!

4/1/2019

26

References

© 2012 ShoeBar Associates All

Rights Reserved
51

Slide Source
4 FDA, Office of Science and Engineering Laboratories Annual Report for 2011.

6-7 AAMI/ANSI/IEC 62304:2006, "Medical Device Software - Software Life Cycle Processes",

Association for the Advancement of Medical Instrumentation, July 2006.

8 http://www.agilemanifesto.org/

11-19 Shoemaker, B., and N. Van Schooenderwoert, "Jump Out of the Waterfall: Applying Lean

Development Principles in Medical Device Software Development," presented at Software Design for

Medical Devices, May 2010.

21 Pate, B. and M. Russell, "Agile methods for medical device software … Can it be compliant? Can it

be safe?" SoftwareCPR LLC Presentation, October 2010.

29-30 Pate & Russell

31-32 Ambler, S. "Agile/Lean Documentation: Strategies for Agile Software Development",

http://www.agilemodeling.com/essays/agileDocumentation.htm

36 Raymond, T., N. Van Schooenderwoert, and B. Shoemaker, "Software Quality and FDA: The

Lean/Agile Way," course presented 12. May 2011.

39 Pate & Russell

40-44 IEC 62304

45 AAMI TIR45:2012 "Technical Information Report: Guidance on the use of AGILE practices in the

development of medical device software", Association for the Advancement of Medical

Instrumentation, August 2012.

46-48 Rasmussen, R., T. Hughes, J.R. Jenks, J. Skach, Adopting Agile in an FDA Regulated Environment,

Agile 2009 Conference Proceedings, IEEE Computer Society, 2009.

49-50 Raymond, Van Schooenderwoert, and Shoemaker

Additional References

© 2012 ShoeBar Associates All

Rights Reserved
52

 FDA: General Principles of Software Validation (Jan 11, 2002)
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm085281.htm

 FDA: Premarket Submissions, Software Contained in Medical Devices (May 11,

2005)
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm089543.htm

 FDA: Draft Guidance for Industry and Food and Drug Administration Staff -

Mobile Medical Applications (July 21, 2011)

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm263280.htm

 IEC 62304:2006 Medical Device Software – Software Life Cycle Processes

 IEC TIR80002-1:2009, Medical device software - Part 1: Guidance on the

application of ISO 14971 to medical device software

 ISO 13485:2003 (2nd ed) Medical devices – Quality management systems –

Requirements for regulatory purposes

 ISO 14971:2007 (2nd ed) Medical devices – Application of risk management to

medical devices

4/1/2019

27

Acknowledgement

© 2012 ShoeBar Associates All

Rights Reserved
53

A number of these slides were developed by Nancy Van Schooenderwoert,

Lean-Agile Partners Inc., and are based on her work in coaching teams in

lean methods for high-quality software and hardware development.

Nancy Van Schooenderwoert

Lean-Agile Partners, Inc.

162 Marrett Rd., Lexington, MA 02421

781-860-0212

NancyV@leanagilepartners.com

http://www.leanagilepartners.com

Contact Information

© 2012 ShoeBar Associates All

Rights Reserved
54

Brian Shoemaker

Principal Consultant

ShoeBar Associates

781-929-5927

bshoemaker@shoebarassoc.com

